# FACULTY OF INFORMATICS

## M.C.A. I Year I - Semester (Main) Examination, February 2015

# **Subject: Discrete Mathematics**

Time: 3 Hours Max. Marks: 80

Note: Answer one question from each unit. All questions carry equal marks.

## Unit – I

- 1 a) Using the laws of algebras of propositions shown that

  - i)  $(p \land q) \lor p \equiv p$  ii)  $(p \land q) \lor (p \land \sim q) \equiv p$
  - b) What are quantifiers? Explain the different types of quantifiers.

2 a) Show that for any two sets A and B,

 $A - (B \cup C) = (A - B) \cap (A - C)$  by Venn diagram

b) Reduce the given expression to sum of products form using don't care combinations.

$$f(A,B,C,D) = \sum m(1,3,7,11,15) + \sum d(0,2,4).$$

## Unit – II

- 3 a) State and prove fundamental theorem of Arithmetic.
  - b) Show that if any five integers from 1 to 8 are chosen, then at least two of them will have a sum 9.

### OR

4 a) Draw the Hasse diagram for the partial ordering

 $\{(A,B) \mid A \subset B\}$  on the power set p(s) where  $s = \{a,b,c\}$ 

- b) Show that in a complemented, distributive lattice, the following are equivalent
  - a≤b
- ii)  $a \wedge b' = 0$
- iii) a' v b=1
- iv) b' ≤ a'

# Unit - III

- 5 a) State and prove principles of inclusion exclusion.
  - b) Find the number of arrangement of the letter in the word "ACCOUNTANT".

6 a) Find the sequence  $\{y_k\}$  having the generating function 'G' given by

$$G(x) = \frac{3}{1-x} + \frac{1}{1-2x}$$

- b) Find the sequences corresponding to the ordinary generating function
  - i)  $(3+x)^3$
- ii)  $3x^3 + e^{2x}$

## Unit - IV

7 a) Solve the recurrence relation together with initial conditions

$$a_n = 3a_{n-1} - 3a_{n-2} + a_{n-3}$$
;  $a_0 = 3$ ,  $a_2 = 3$ ,  $a_3 = 10$ 

b) Find a general expression for a solution to the recurrence relation  $a_n - 5a_{n-1} + 6a_{n-2} = n(n-1)$  for  $n \ge 2$ .

- 8 a) Solve the recurrence relation  $F_{n+2} = F_{n+1} + F_n$  where  $n \ge 0$  and  $F_0 = 0$ ,  $F_1 = 1$ .
  - b) Define cyclic group and then prove set of integers with respect to + i,e(Z,+) is a cyclic group, a generator being 1.

## Unit - V

9 a) Define sub graph and the graph G(V,E) shown below, determine whether or not  $H(V_1,E_1)$  is a sub graph of G, where



b) Prove that every circuit contains a cycle.

OR

- 10 a) What is minimal spanning tree? Explain briefly.
  - b) Represent the expression as a binary tree and write the prefix and postfix form of the expression A\*B-C↑D + E/F.

\*\*\*\*