8

8

8

8

8

8

10

16

16

16

16

8

8

8

6

FACULTY OF INFORMATICS

M.C.A. II - Year I - Semester (Main) Examination, January 2015

Subject: Design and Analysis of Algorithms

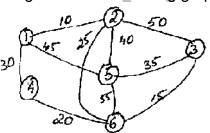
Time: 3 hours Max. Marks: 80

Note: Answer ONE question from each unit. All questions carry equal marks.

UNIT - I

- 1 a) Write a short note on Randomized algorithms.
 - b) Write an algorithm for finding maximum element of an array. Perform best and average case complexity with appropriate notations.

OR

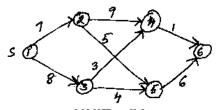

- 2 a) Write an algorithm to delete an element into a circular queue.
 - b) Briefly explain about adjacency matrices and lists.

UNIT - II

- 3 a) Write an algorithm to compute convex hull of the n input points which makes use of stack. What is its time complexity?
 - b) Write binary search algorithm and explain it with an example.

OF

- 4 a) Write Prim's algorithm for finding minimum spanning tree and analyse.
 - b) Find the minimum spanning tree of the following graph using Prim's algorithm.



UNIT - III

5 Design an algorithm using dynamic programming to solve knapsack problem.

ÓΡ

6 Find a minimum cost from S to T in the multistage graph of below figure.

UNIT - IV

7 Explain 8 queens problem using back tracking along with its state space tree. Develop an algorithm for the same.

OR

- 8 Explain branch and bound technique to solve knapsack problem. Use it to solve the following instance of the knapsack problem n = 5;
 - $P = \{10, 15, 6, 8, 4\}$ $W = \{4, 6, 3, 4, 2\}, m = 12$

ÚNIT-V

- 9 a) Discuss in detail NP complete problem with examples.
 - b) Give the cliques decision problem.

OR

- 10 a) Describe about job shop scheduling.
 - b) Discuss the features of node cover decision problem.

9
